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1. ABSTRACT

This report describes a research project to develop a computational capability to accurately and
efficiently simulate unsteady, three-dimensional, hypersonic, viscous flow fields about realistic
flight vehicle configurations with separating stores and/or components. Unstructured grid
technology with an advanced implicit high-resolution flow field solution algorithm is utilized as
the basis for this computational capability. The solution algorithm uses an implicit Newton-
relaxation scheme with approximate LU factorization and Roe flux-difference splitting. A new
unstructured grid generation procedure labeled Advancing-Front/Local-Reconnection (AFLR)
was developed that significantly improves the state-of-the-art. This procedure uses an iterative
point placement scheme. New points are generated using advancing-front type point placement
and the connectivity is optimized with iterative local-reconnection. The combined efficiency,
quality, and robustness for AFLR are a substantial improvement over existing techniques.
Unsteady and steady flow fields about complex flight vehicles with separating components were
simulated to demonstrate, test, and validate the overall computational procedure.



2. INTRODUCTION

Recent advances in solution algorithms, grid generation, and computer architecture have made it
possible to simulate flow fields about increasingly complex flight vehicles using computational
fluid dynamics (CFD). However, there is still a significant difference between reality and the
overall complexity of the simulations. Computational models of flight vehicles that are often
called complex or complete are in actuality, simplified approximations to the real vehicle.
Simulation of unsteady, viscous flow fields about vehicles with real operating conditions, such as
maneuvering vehicles, varying engine conditions, moving components, and/or separating stores,
are typically considered too demanding for current technology. The underlying fluid mechanics
of such flow fields is not well understood, and computational simulation could provide
significant insight. There is real need for a capability to simulate complex flow fields about flight
vehicles with realistic geometry and operating conditions. This research project addresses this
need for the specific case of flight vehicles with separating stores, which is of importance to the
Air Force and the aerospace industry. Computational tools have been developed under this grant
for the purpose of investigating and gaining new knowledge of the fluid dynamics involved in
such cases. These tools are also directly applicable to a wide variety of problems of interest to
the Air Force and industry other than store separation cases.

The objective of this research project was to develop computational tools for simulation of
unsteady, three-dimensional, hypersonic, viscous flow fields about realistic flight vehicle
configurations with separating stores and/or components such as that shown in Fig. 2.1. Typical
flight vehicles of interest operate at Mach numbers that range from 6 to 15. Unstructured grid
technology with an advanced implicit high-resolution flow field solution algorithm was utilized
to develop this capability.
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Fig. 2.1. Separating kinetic energy weapon.




Unstructured grid technology is a promising approach offering geometric flexibility for handling
of both complex geometry and physics. As such, it can provide a powerful capability, fully
meeting the primary objective of accurately and efficiently computing complex unsteady flow
fields. There are several researchers that are active in the area of unstructured grid technology.
The number of researchers in this area has steadily increased as the technology has been
developed into a powerful and useful tool. Several procedures for calculating three-dimensional
inviscid flow fields have been developed and successfully applied to complex configurations,
examples of which have been presented by Barth [1], Batina [2], Frink et al [3], Jameson et al.
[4], Kallinderis et al. [5], Lohner et al [6], Marcum et al. [7], Mavriplis et al. [8], Peraire et al.
[9,10], Stoufflet et al. [11], Weatherill et al. [12,13], and others. For calculating viscous flow
fields, considerably less work has been published using unstructured grids. In two-dimensions,
procedures have been presented with turbulence modeling by Barth [14], Holmes and Connell
[15], Mavriplis [16], Pan and Cheng [17], and Rostand [18]. In three-dimensions, a hybrid
prismatic procedure has been presented by Nakahashi [19] and fully unstructured procedures
have been presented by Chalot et al. [20], Marcum et al [7,21], and Morgan et al [10,22]. The
unstructured solution algorithms that have been employed by various researchers include explicit
and implicit time discretization, finite-element and finite-volume space discretization, and
upwind flux evaluation. While no single approach stands out as clearly superior, an implicit
upwind approach appears to offer the most promise for unsteady viscous flow fields.

Solution-adaptive unstructured grid technology developed here at the ERC has been applied to a
variety of configurations [12,13,21]. Transonic, inviscid flow fields about wings, commercial
aircraft, and military aircraft, such as the F-15 and F-18, have been computed successfully using
solution-adapted unstructured grids. Transonic, turbulent flow fields about launch vehicle fore
bodies have been calculated using various turbulence models and hybrid unstructured grids.
Unsteady, hypersonic, inviscid flow fields about flight vehicles with a separating kinetic-energy
weapon and subsequent component separation have been modeled using unstructured grids and
trajectories determined from the flow field.

Using an unstructured grid approach, the following components are required to meet the primary
objective of this project.

1) A grid generation procedure is required that will efficiently generate and re-generate,
without user intervention, fully unstructured grids of high quality which are suitable
for viscous flow about complex configurations.

ii) A flow solver is required that will accurately and efficiently compute unsteady
viscous flow fields about complex flight vehicle configurations using an unstructured
grid.

These components must be developed concurrently and eventually work together as one
procedure.

Much of the basic technology required to develop the computational tools for this research work
existed at the start of this research work. However, it became clear as the work progressed that
existing technology was in some cases not suitable for unsteady applications with complex
geometry in relative motion. In particular, state-of-the-art unstructured grid generation
procedures based on traditional advancing-front or Delaunay were found to be in need of
significant improvements for these applications. Existing procedures simply were not robust
enough and either required excessive computational resources or produced grids of low quality



or both. A significant portion of the grant work was focused on solving this problem. As a result
the state-of-the-art in unstructured grid generation was significantly enhanced by the
development of a new unstructured grid generation procedure [25,26]. This procedure was
labeled Advancing-Front/Local-Reconnection (AFLR). It uses an iterative point placement
scheme wherein new points are generated using advancing-front type point placement and the
connectivity is optimized with iterative local-reconnection. The combined efficiency, quality,
and robustness for AFLR are a substantial improvement over existing techniques. As a
consequence, the feasibility of unsteady applications with complex moving geometry was
significantly enhanced. This advance has also had a significant impact on other application areas.
In particular, the AFLR procedure is widely used in the automotive industry for structural,
manufacturing, and other applications.

Results were obtained for a variety of static and dynamic store separation and launch vehicle
applications. While the scope of the grant did not allow for in-depth validation or extended
evaluation of unsteady applications, the results do demonstrate the level of complexity that can
be handled using the present approach. They also indicate that additional work is required on
improving efficiency. In particular, follow on work should be focused on the implicit solver
development in a parallel or distributed processing environment.

In the following sections, additional details on the unstructured grid generation procedure,
solution-algorithm, and results are presented.



3. UNSTRUCTURED GRID GENERATION

The most significant accomplishment for this research project is the successful development of
the Advancing-Front/Local-Reconnection (AFLR) unstructured grid generation procedure
[25,26]. Unstructured grid generation procedures for triangular and tetrahedral elements in use
now are typically based on an octree [27], advancing-front [28,29], or Delaunay [30-33]
approach. Unfortunately, with these procedures either efficiency or grid quality is relatively
poor, especially in three-dimensions. Alternative approaches can be developed using automatic
point insertion with a suitable point placement and local-reconnection to optimize the
connectivity. This approach has been taken by the Principal Investigator to develop a very
efficient local reconnection procedure using advancing-front point placement for generation of
triangular or tetrahedral element grids named AFLR. This method has been extended for
generation of high-aspect ratio elements using advancing-normal point placement. It has also
been extended for generation of structured element types (quadrilateral, prism, hexahedral, etc.)
using advancing-point point placement. High-quality isotropic and high-aspect ratio element
unstructured grids have been efficiently generated using this method for a variety of
geometrically complex configurations. Various point placement strategies and connectivity
criteria can readily be incorporated. The flexibility and generality inherent in this approach make
it ideally suited to a wide variety of computational field simulation applications.

The AFLR procedure is of significance to all disciplines of computational field simulation. It
provides a substantial increase in efficiency and grid quality. In most cases, the increased grid
quality improves the solution algorithm efficiency and accuracy. User-time required to generate
a grid for a realistic configuration has also been reduced by minimizing required user-input,
improving robustness, and increasing computational efficiency. For the current project, this grid
generation technology is essential for the resulting research capability to be useable for the
intended complex unsteady applications. This technology is also applicable to many areas of
interest to the Air Force. Essentially, any computational field simulation application with
complex geometry can benefit. This technology has been and transferred to the aerospace and
automotive industry. It is currently in use for a variety of disciplines, including, computational
fluid dynamics, computational structural analysis, computational electro-magnetics and
computational heat-transfer. Applications range from military aircraft to automotive interior
heating and cooling. '

The triangular/tetrahedral grid generation procedure used in AFLR is a combination of automatic
point creation, advancing-front, point and normal point placement and connectivity optimization
schemes. A valid grid is maintained throughout the grid generation process. This provides a
framework for implementing efficient local search operations using a simple data structure. It
also provides a means for smoothly distributing the desired point spacing in the field using a
point distribution function. This function is propagated through the field by interpolation from
the boundary point spacing or by specified growth normal to the boundaries. Points are generated
using either advancing-front type placement for isotropic elements, advancing-point type
placement for isotropic right angle elements, or advancing-normal type point placement for right
angle high-aspect ratio elements. The connectivity for new points is initially obtained from direct
subdivision and then improved by iteratively using local-reconnection subject to a quality
criterion. A min-max type (minimize the maximum angle) criterion is used. The overall
procedure is applied repetitively until a complete field grid is obtained.




High-quality isotropic and high-aspect ratio element two- and three-dimensional grids have been
efficiently generated about geometrically complex configurations using this procedure. Required
CPU times for this method on various computers are shown in Fig. 2.1. The CPU times shown
include all steps in the procedure including I/O and are for generation of isotropic elements about
a variety of configurations. Generation times for grids with high-aspect ratio elements are
slightly lower. As shown the required CPU times for generating field grids about realistic
configurations is reasonable and are a substantial improvement over other methods. Complete
details of the AFLR procedure are presented in Refs. 25 and 26.
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4. SOLUTION ALGORITHM

A general data structure that is independent of the element type is required for the flow solver. A
successful data structure must be invariant to the global structure of the grid. It also should
exploit, wherever possible, local structure at the element level. In our approach, a local edge
based data structure is used. Two data points are attached to each edge. The edge data points are
equivalent to locations i and i+/ of a structured grid. Associated with each edge is an area and a
volume. Linking edges to closely aligned edge neighbors to form a local structured connectivity
can also expand this data structure. This connectivity is equivalent to locations i-1, i, i+1, i+2 of
a structured grid as illustrated in Fig. 4.1. Ideally, the connected edges should form a very
smooth line. However, for a typical grid with varying element volumes or types, there will be
some -connected edges that do not form a smooth line. Based on results obtained with such
connections, this does not create any numerical difficulties. The local structured edge
connectivity allows direct implementation of many high-resolution upwind schemes developed
for structured grids. The high-order terms in such schemes can be obtained directly using the
aligned neighboring edges or indirectly from gradients of the flow properties determined at both
edge data points. The gradient approach offers potentially more accuracy for non-aligned cases at
the expense of more computational work. Both approaches have been implemented.
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Figure 4.1. Local edge based data structure.

The edge based data structure can be used with either vertex based or centroid based solution
algorithms. Within the flow solver, the solution algorithm for either scheme is identical. Only the
initial geometric setup and boundary condition implementation differ. The edge data structure is
extracted from the basic grid information for each element. The contribution from an element to
the total area and volume for an edge is dependent upon the element type. For vertex-based data,
the two edge data points along with the element centroid, the face centroids of the two element
faces attached to the edge, and the midpoint of the edge define the element area and volume
contributions as shown in Fig. 4.2. For centroid based data, the element area and volume
contributions are defined by the two edge data points along with the element centroid and the




element face points of the face attached to the edge as shown in Fig. 4.3. The procedures
developed for this project were designed to be very general so that they can be used with varying
topology and element type and that they can be efficiently used on a variety of computer
architectures. The edge data structure can also be used with a grid decomposed into sub domains
for parallel or distributed processing.

Edge Volume

Tetrahedral Contribution Hexahedral Contribution

Fig. 4.2. Edge area and volume contributions for vertex based data.

An accurate and efficient solution algorithm is required to meet the primary objective of this
project. The algorithm must effectively eliminate the CFL restriction imposed by high aspect
ratio elements within shear layers. It must also accurately simulate the flow field with varying
high gradient features, such as shock waves, contact discontinuities, rapid expansions, shear
layers, etc. The solution algorithm developed for this project is based upon the structured
algorithm developed by Whitfield et al [23,24] that is an implicit Newton-relaxation scheme with
an approximate LU factorization and Roe flux-difference splitting. Implicit algorithms with Roe
flux-difference splitting have been successfully developed by others for single element type
unstructured grids. These include, the inviscid three-dimensional procedure developed by Batina
[2] which includes an implicit Gauss-Siedel scheme and the viscous two-dimensional procedure
developed by Pan and Cheng [16] which includes an implicit approximate LU factorization
scheme.




Edge Area

Tetrahedral Contribution Hexahedral Contribution

Fig. 4.3. Edge area and volume contributions for centroid based data.

Given the previously described data structure, the governing equations can easily be discretized
in space using a finite volume approach. Discretization of the Reynolds-Averaged Navier-
Stokes equations expressed in integral form results in a formulation that involves summation of
fluxes over a control volume. The net flux or residual can be approximated by summing for a
given solution point the average flux through the area associated with each edge connected to the
point. A dissipative term can be added to the inviscid flux vector for stability and capturing
discontinuities. Using Roe flux-difference splitting [34], the dissipative term is obtained from the
sum of the difference in the flux vector along each characteristic curve associated with each
eigenvalue of a one-dimensional system aligned with the edge. High-order schemes can be
obtained by using a Taylor series expansion to extrapolate the primitive variables. This requires
gradients of the solution variables which can be obtained using the previously described local
structured edge connectivity, directed gradients evaluated at the end points of the basic edge, or a
least-squares approach [35]. The least-squares approach appears to offer the best robustness.
Limiting is required with the high-order inviscid flux vector to prevent the creation of local
extrema when variables are extrapolated. The elimination of local extrema is required to preserve
monotonicity and to avoid the development of spurious oscillations near solution discontinuities.
The limiter function is applied to the Taylor’s series expansion. Two different limiters are
currently available in the flow solver. They are: (i) Barth’s limiter [36] and (i1)
Venkatakrishnan’s limiter [37]. During the course of development of the flow solver, it was
observed that Venkatakrishnan’s limiter can produce varying pressure distributions depending on
the choice of the thresholding parameter. At present, the Barth limiter is preferred with the
present technology. However, further investigation is required.
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The gradients required for the viscous flux computations are calculated using a Green’s theorem
approach modified with a directed gradient. Green’s theorem in standard form is used to
compute the gradient at each node. Then an average gradient is obtained for each edge. However,
this produces a lower accuracy then its structured equivalent. This is due to the averaging process
that produces a second-order error term that is based on twice the local spacing (2h rather than
h). A directed gradient correction can be used to improve this accuracy. In this approach the
component of the average gradient tangent to the edge is replaced with a directed gradient based
on the difference between the solution variables at the two edge nodes. This component has an
error term four times as accurate as the simple average. This scheme also has the advantage that
it can be used directly with elements of any type, such as tetrahedral, pentahedral, hexahedral,
etc. A standard Green’s theorem approach requires differing formulations with greater
complexity for each element type.

An implicit time discretization is used in the solution algorithm proposed for this project. A
Newton-relaxation scheme with approximate LU factorization is used to solve the implicit
discretized equations. In this approach, Newton’s method is used to determine a solution vector
that satisfies the discretized unsteady equations. The flux-Jacobians required for Newton’s
method need not be exact and can be approximated without any loss in accuracy. Efficiency can
be improved by using flux-Jacobians from a flux splitting scheme rather than those from the
flux-difference splitting scheme used to determine the residual [23,24]. The system of equations
that result from the Newton-linearization is solved using a modified two-pass approximate LU
factorization scheme. These equations need not be solved exactly and can be solved
approximately without any degradation in accuracy. This implicit approach has been used
successfully with structured grids for steady and unsteady viscous flow fields at the ERC [23,24].
Time steps corresponding to CFL values in the thousands have been obtained with structured
grids on fairly complex configurations. Eliminating the CFL restriction imposed by high-aspect
ratio elements in shear layers is essential for unsteady viscous flow calculations to be feasible.

Results with unstructured grids indicate that the implicit scheme is invariant to the global
structure of the grid provided a suitable reordering scheme is used. A reordering that results in
vertices ordered with some relation to their location in space appears to be adequate. Such a
reordering can be readily obtained for unstructured grids. Other than the required reordering, the
implicit algorithm is essentially identical between the structured and unstructured versions.

The finite volume scheme described here has been used successfully with structured grids and
more recently with unstructured grids. The implementation is done nearly identical to that for the
structured case. The primary difference is that with structured grids the high-order terms are
usually obtained using the points i-/ and i+2 adjacent to an edge containing points i and i+/
rather than directed gradients or least-squares. Similarities with structured grids allow us to
utilize the significant expertise in structured solution algorithms that is available at the ERC.

A turbulence model is required to obtain the turbulent viscosity coefficient. For the present
research work, the turbulent viscosity is computed using a simplified form of the Spalart—
Allmaras one—equation turbulence model [38]. This model is a second-order partial differential
equation that is solved de-coupled from the governing equations. Fully turbulent flow is assumed
and the turbulence transition terms are neglected to produce a slightly simplified form of the
turbulence model.
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The trajectories of moving bodies are determined from a time-integration of the aerodynamic
forces acting on the bodies. A full six degree of freedom kinematics model with translation and
rotation is implemented. The time-integration of the kinematics equations is explicit and is
solved de-coupled from the flow field solver. Force and moments are obtained using a surface
integration of the flow field.

A deforming grid is used in the present work. To account for grid motion, the governing
equations are modified by adding a grid velocity term to the convective flux terms for mass,
momentum, and energy. Either modifying the time derivative term or adding a separate grid
conservation law can account for the effects of a time-dependent element volume. In the present
work a grid conservation law is used.

As the grid deforms the local element quality typically degrades. Eventually the grid must be
regenerated to prevent the solver performance from being impacted. Deformation and re-
generation are done locally in prescribed regions for optimal performance. Surrounding each
body is a region of elements that move rigidly with the body as shown in Fig. 4.4. Between
bodies, elements deform when there is relative motion (also shown in Fig. 4.4). Periodically, a
new grid is generated in the deforming region to minimize distortion of deforming elements.
This grid movement scheme is suitable for both viscous and inviscid flow fields. In the viscous
case, the rigid region is essential, as the required high aspect ratio elements would distort
significantly with only minimal movement. Actual movement of the grid is related to the
distance from a moving body. Using a “layered” approach this can be determined directly
without iteration from the motion of the bodies. Topological “layers” are used to define the
deforming and rigid regions as shown in Fig. 4.5. A coefficient based on the distance from a
moving body is used to determine the deformation. This coefficient varies from zero (rigid body
motion) at the moving body surface to one (no motion) away from the body. The grid deforms
locally if the coefficient is between zero and one.

SRR

27,

N\

Body-1

I Grid rigidly attached to Body-1
II Grid deforms when there is relative motion
III Grid rigidly attached to Body-2

Fig. 4.4. Rigid and deforming regions for relative motion applications.
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Body-1

I 1,2,3 B=1,1,1
I 4,56 B=07505,025
117,89 B=0,0,0

Fig. 4.5. Use of layers for grid deformation.
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5. RESULTS

Selected results are presented here to demonstrate the basic capabilities of the tools developed
for this research project. One example that includes multiple simulations is shown in Fig. 5.1.
For this configuration the main hypersonic vehicle contains a cavity on the top surface from
which a much smaller kinetic energy weapon (KEW) vehicle is separated. As shown in Fig. 5.2
the KEW vehicle consists of an embedded kinetic energy weapon surrounded by two shrouds
and an engine section. In the overall simulation the flow about the main vehicle is simulated first
to get the flow field near the cavity. Next the domain is reduced to the cavity region and KEW
vehicle only as shown in Figs. 5.3, 5.4 and 5.5. The flow field from the initial simulation is then
used as a boundary condition for the unsteady simulation of the separating KEW vehicle. The
main vehicle is moving at Mach 8 and the store is ejected with an initial velocity of 30 m/s.
Mach number contours are shown in Figs 5.6, 5.7 and 5.8 at various stages of the simulation.
Pressure contours for a simulation of the final shroud separation are shown in Fig. 5.9.

The present technology has also been applied extensively to launch vehicle applications. A
generic Delta configuration was simulated during separation of the strap-on boosters at a Mach
number of 2.1. There are a total of nine strap-on boosters surrounding the main vehicle and every
other one is separating. Pressure contours for a single separation location are shown in Figs.

5.10,5.11 and 5.12.

gm— SEPARATING KINETIC ENERGY WEAPON (KEW) VEHICLE
(free to move relative to main vehicle with
trajectory computed from aerodynamic forces)

" MAIN VEHICLE

Fig. 5.1. Generic hypersonic vehicle with a separating kinetic energy weapon.
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ENGINE SECTION e, .
{free to move relative to k.e. weapon) >

gy UPPER NOSE SHROUD
*._ {free to move relative to k.e. weapon)

Y KINETIC ENERGY WEAPON

L LOWER NOSE SHROUD
(free to move relative to k.e. weapon)

Fig. 5.2. Generic kinetic energy weapon.
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Fig. 5.6. Mach number contours on main vehicle surface.

Fig. 5.7. Mach number contours on mid-plane and main vehicle surface when KEW is just
leaving main vehicle cavity.
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Fig. 5.8. Mach number contours on mid-plane and main vehicle surface after KEW has left
main vehicle cavity and KEW motor has ignited.

Conditions: inviscid unsteady flow, M= 4.0, 0=0.0

Fig. 5.9. Pressure contours during shroud separation from the KEW.
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Fig. 5.10 Delta launch vehicle pressure contours.
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Fig. 5.11 Forward view of Delta launch vehicle pressure contours.

Fig. 5.12 End view of Delta launch vehicle pressure contours.
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